
 
  v.13, n.2 
  Vitória-ES, Mar.-Apr. 2016 

p. 1 - 26 ISSN 1808-2386        DOI: http://dx.doi.org/10.15728/bbr.2016.13.2.1 

 

Assessing the Impact of the Realized Range on the (E)GARCH Volatility: 

Evidence from Brazil 

 

Victor Bello Accioly
†

 

COPPEAD/Universidade Federal do Rio de Janeiro - UFRJ 
 

Beatriz Vaz de Melo Mendes
Ω

 

COPPEAD/IM/Universidade Federal do Rio de Janeiro - UFRJ 

 

 

ABSTRACT 

This paper investigates whether the inclusion of the realized range as regressor in the 

(E)GARCH volatility equation would add information to the process improving out-of-sample 

forecasts performance and providing more accurate estimates of the volatility persistence. 

Sixteen range measures at eleven data frequencies are tested using Brazilian stock market 

data. Several measures for assessing the improvements in the fits were used including the 

likelihood ratio test, the persistence percentage decrease, and a formal statistical test for 

comparing forecasts errors from competing models. We found that for both the GARCH and 

EGARCH models there are always some realized range type at some frequencies bringing 

information to the volatility process with considerable persistence reduction. 

Key words: GARCH and EGARCH models. Realized volatility. Realized range. Volatility 

forecast. 
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1 INTRODUCTION 

 
olatility is a key piece in the financial environment, with significant role    in 

investment, security valuation, risk management, and monetary policy 

making. Usually most of the activity in the research area of a financial 

institution is devoted to the modeling and forecasting of an   asset volatility. 

Among all different volatility modeling approaches, the GARCH family is 

unequivocally the most popular and well known one, probably due to its 

flexibility,   easy  to  estimate  and  success  when  modeling  many  of    the 

stylized  facts  about financial returns,  in particular the presence of clusters of volatility. For  

a comprehensive review see Poon and Granger (2003). Since Engle’s (1982) seminal paper, a 

long list of articles have empirically proved the usefulness of the GARCH family members in 

areas such as economics and social sciences (see, e.g., the works of Bollerslev (1986, 1987), 

Engle et al. (1987), Nelson (1991), Glosten et al. (1993), and Hansen and Lunde (2005a)). 

However, their out-of-sample predictive ability was cast in doubt after some unsatisfactory 

empirical results, see Akgiray (1989), Kat and Heynen (1994), Franses and Van Dijk (1995), 

Brailsford and Faff (1996) and Figlewski (1997)). It should be noted, though, that the poor 

out-of-sample performance could be accredited to the inherent noise of the squared returns 

used in many works as proxies in the evaluation criteria. In fact, Andersen and Bollerslev 

(1998) using as proxy a new measure based on high-frequency returns were able to show that 

GARCH volatility daily forecasts do perform well. 

To further improve GARCH volatility forecasts one may include exogenous variables in 

the conditional variance equation. Usual choices of regressors include trading volume, 

macroeconomic news announcements, overnight returns, after hours volatility, implied 

volatility from option prices and realizedvolatility. 

However, there is no consensus on the advantages of the use of such exogenous 

variables. For example, with respect to the addition of trading volume, Lamoureux and 

Lastrapes (1990) and Brooks (1998) found conflicting  results.  Using  daily equity returns  

and GARCH models, Flannery and Protopapadakis (2002) investigated seventeen 

macroeconomic variables and found that six of them (Consumer Prices Index, Producer Price 

Index, a Monetary Aggregate, Balance of Trade, Employment Report, and Housing Starts) 

could be strong risk factor candidates. Similarly, Bomfim (2003) found that macroeconomic 

pre-announcement effects in  the stock market could be highlysignificant. 

V 
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Gallo and Pacini (1998), using six stock market indices, found evidence of 

improvements in the forecasting performance of the GARCH and EGARCH models when the 

overnight returns are inserted into the conditional variance equation. Martens (2002) showed 

that for the S&P 500 returns, the squared overnight return plus the realized volatility as well as 

the rescaled realized volatility are statistically significant. Taylor (2007) also found evidence  

of significant improvements in the conditional volatility forecasts of the S&P 500 index 

returns when including overnight information revealed in its E-mini futures market. Chen et al. 

(2012), by breaking up the after-hours period into pre-open, post-close and no-trading, 

investigate the role of the pre-open period variance in the GARCH conditional volatility. 

The implied volatility seems also to bring important additional information to the 

conditional variance equation of some series. Blair et al. (2001) found that the index VIX 

implied volatility accounted for almost all relevant information about the  conditional  

variance of the S&P 100 index daily returns. Giot (2003) and Koopman et al. (2005) showed 

the superiority of implied volatility for options, see also Day and Lewis (1992). We should 

note that even in mature markets not every stock has an option being traded. Hence, for these 

cases, model free realized measures of volatility may provide reliable exogenous alternatives. 

For example, Taylor and Xu (1997) included the 5-minute realized volatility and the daily 

implied volatility constructed based on exchange rate quotations to explain the dynamics of 

the Deutschemark/dolar volatility. They found that the former was not quite helpful for daily 

estimation, although appearing to be more informative than the later when hourly data was 

used. Zhang and Hu (2013) experimented the realized volatility as a regressor but did not 

provide a final answer to the question whether the realized measure could actually provide 

additional information to the volatility process. Thus, there is more to be explored in  the 

world of the realized measures and their additional information to  GARCH models. 

Accordingly,  in this paper we use Brazilian data to investigate whether the inclusion    

of the realized range as exogenous variables in the variance equation of GARCH and 

EGARCH models can provide additional information  to  the  volatility  process  improving 

the one-step- ahead forecasts and providing more accurate estimates of the persistence. Our 

methodology is similar to those found in Zhang and Hu (2013) and Day and Lewis (1992), 

differing from that when we include the log-realized range as regressor,  and also when we  

use formal statistical tests and graphics to evaluate the performance of the augmented model. 

Our decision in considering Brazilian data is due to two  reasons.  First,  the  

inexpressive  number  of  investigations  on  volatility  models  based  on  high-frequency data 
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devoted to emerging markets. Second, the still open question whether or not an emerging 

market may provide valuable insights for foreign investors interested in investing  in  

emerging or even in developed markets. Although Merton (1987) suggests that investors 

holding imperfectly diversified portfolios (those that cannot be fully diversify away firm- 

specific risk due to limited access to information in the presence of market frictions), and some 

economic theories suggest that idiosyncratic volatility should be positively related to expected 

returns (XU; MALKIEL, 2003; EWENS et al., 2013), Ang et al. (2006; 2009) found a 

negative relation between idiosyncratic volatility and future returns. Measuring the stock 

return idiosyncratic volatility relative to the Fama and French (1993) model, Ang et al. (2006; 

2009) investigated 23 developed markets, with a closer analysis of the U.S. market for which 

more data were available, concluding that the puzzle of low returns to high idiosyncratic 

volatility stocks calls for further investigation. Choudhry and Osoble (2015) highlight that 

although the investigation of interdependence amongst international stock markets has 

important practical implications for asset allocation, risk management, and economic policy, 

the existing research on industry or firm level interdependence has been mainly focusing on 

developedmarkets. 

The contribution of this paper is twofold. Firstly,  we empirically show through tests  

and graphics that the realized range may provide further information to GARCH and EGARCH 

processes, resulting in better forecasts and persistence reduction. Secondly, although only 

Brazilian data is analyzed, this study may provide valuable insights for foreign investors 

interested in investing in emerging markets. 

The remainder of this paper is organized as follows. The following two sections provide 

the theoretical framework for the empirical analysis, including a brief discussion on high- 

frequency data, the definitions of the realized measures, and a brief review of the (augmented) 

GARCH class of models. Section 4 describes the Brazilian stock market and the data sets 

used, carryon the analysis and discuss the empirical findings. Concluding remarks are given in 

Section 5. 

2 REALIZED MEASURES 

High-frequency data have recently become widely available, promoting  the 

development of faster and more sophisticated computer resources requiring from researchers 

beyond basic programming skills. In spite of being very expensive, some of their sub- 

products, such as  the realized measures, indices and proxies, have become very popular. 

http://www.bbronline.com.br/
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Andersen et al. (1999) advocated that the rich information contained in the high-frequency 

data may be effectively exploited through the use of realized  volatilitymeasures. 

According to varying assumptions made on information sets and frequencies, different 

realized volatility measures may be extracted from high frequency data. Andersen et al. 

(1999) showed that the realized volatilities provide a more meaningful and accurate  

alternative when evaluating the performance of daily or longer-run volatility forecasts.  In 

fact, the two more important applications for these observed series may be (i) their ability for 

improving or more accurately assess forecasts performance, and (ii) helping quantifying 

market risk, see Andersen and Bollerslev (1998), Engle (2000), Barndorff-Nielsen and 

Shephard (2002b), Andersen et al. (2011), among others. In this paper we explore several 

definitions of realized measures and their usefulness in these two directions. 

2.1 REALIZED VOLATILITY 

The term realized volatility was first used by Fung and Hsieh (1991) and later on by 

Andersen and Bollerslev (1998) to denote the sum of intraday squared returns computed at 

short intervals. The idea was to propose a new estimator for the unobserved integrated 

variance over time intervals. As such, it was intended to be used as an indicative of future 

price movements. It is a model free, computationally trivial and, in principle, highly accurate 

estimator, see Diebold and Strasser (2012). 

Under the Andersen et al. (2001b) framework, the logarithmic asset price (p)  

increments evolve continuously through time according to a stochastic volatility diffusion 

process, and the quadratic variation theory guarantees that the sum of the intraday squared 

returns converges to the integrated variance. The realized variance estimator (RV) over a time 

interval t of 1 day  is defined as 

 
(1) 

 
 

where is thesamplinginterval, n is thenumberofintervalswithin 1 day, and 

defines the intraday ∆-frequency continuously 
 

compoundedreturn. 
 

Assuming the absence of jumps and microstructure noise, the ex-post realized variance is 

an unbiased and consistent estimator of the integrated variance (IV) when the sampling 

frequency theoretically goes to the continuous basis. In his seminal paper, Merton (1980) 
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had already observed that, in the theoretical limit of continuous observation, the variance 

could in principle be estimated without error for any finite interval. 

Therefore, in practice, the optimality of the realized variance as  an  estimate of the  

daily integrated variance is attached to smaller sampling intervals ∆, which could be as small as 

those provided by the transaction-to-transaction prices. This sampling issue was addressed in 

several studies, see, e.g., Andersen et al. (2001a,b, 2003), Barndorff-Nielsen and Shephard 

(2002a,b), where sampling intervals of five to thirty minutes were considered. Bandi and 

Russell (2008) derived a mean  squared  error  based  optimal  sampling  frequency  resulting 

in more accurate forecasts  and some economic  gains. Some recent works  (see,  e.g.,  Zhang 

et al. (2005), Aït- Sahalia et al. (2005), Hansen and Lunde (2006), Aït-Sahalia et al. (2011), and 

Barndorff-Nielsen et al. (2008)) have used all available intraday information, giving rise to  

the so called robust realized variance estimators. 

2.2 REALIZED RANGE 

A drawback of the realized variance as an estimator of the integrated variance is its 

strong dependence on the sampling interval. This issue may be better handled by the realized 

range, whose theoretical properties were derived in Martens and van Dijk (2007) and 

Christensen and Podolskij (2007). 

Parkinson (1980) derived an estimator for the price range under the assumption that    

the daily asset price follows a simple diffusion model without a drift term.  Noting  that 

models based only on closing prices ignore the prices inside the reference period, the 

definition was later on extended to any interval, in particular to intraday intervals. The 

Parkinson realized range estimator is defined as 

 
(2) 

 

 

                                                                (3) 

where Hj, Lj and Oj are the highest, the lowest and the opening prices of the jth interval 

in the tth trading day; and u j and d j are normalized high and low prices. 

Other definitions of realized ranges were then proposed. Extending the definition of the 

volatility estimator of Garman and Klass (1980), Martens and van Dijk (2007) proposed the 

and the estimators: 
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(4) 

 

 

 
(5) 

 

 
(6) 

 

where c j is a normalized closing price based on Cj, the closing  price  of  the  jth  

interval on the tth trading day, and where uj, dj and Oj are as previously defined. Through 

simulation experiments, these range estimates were found to be more efficient than (2). 

Assuming a non-zero drift term, Rogers and Satchell (1991) proposed the following 

range estimator 

 

(7) 

 

 

where uj,  dj  and  cj  are as  previously defined. The authors  proved that   is an 

unbiased volatility estimator whatever is thedrift. 

2.3 CONSTRUCTION OF THE REALIZED MEASURES 

In order to construct the realized measures used in the empirical investigation of Section 

4, we discuss two important issues. 

The first one is concerned with the sampling frequency ∆. Noting that several studies 

found the optimal choice for the sampling frequency ∆ to be between one and thirty minutes 

(see, e.g., Andersen et al. (2001a, 2003), Hansen and Lunde (2006) and Bandi and Russell 

(2008)),        we        take        the        following        choices        for        ∆        in      minutes: 

. Since the trading frequency and volume are 

smaller during the after-market session, when it is observed only up to 2% price variation 

relative to the regular session closing price, the ∆-frequency intervals are computed within the 

regular session hours only. For example, using ∆ = 15 in a 420 minutes normal trading day 

results in n = 28 observations of the realized measure. 

The second problem is how to extend the definition of a realized measure so that it 

represents a volatility measure for the whole day. We note that the earliest studies on realized 

volatility were based on exchange rate data, which are available 24 hours/day (apart from 
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weekends). However, in the case of financial instruments, usually traded only in the active  

part of the day, one should somehow include the overnight data. Likewise Hansen and Lunde 

(2005b), we consider three ways for extending the realized measures of volatility: scaling the 

estimator or taking the squared overnight returns and either adding to (or combining with) the 

(daily) realized measure. 

Let Rt (∆) represent any previously defined realized range (2), (4),  (5) or (7),  and let  

r1,t denote the overnight return, that is, the close-to-open return, on date t. The first proposal 

scales Rt (∆) by a constant so that the resulting estimator has the desired expected value. 

                                                             (8) 

where δ may be estimated (Hansen and Lunde, 2005b) using 

 
 

(9) 

 
 

where T is the sample size. 
 

The second proposal just adds the squared overnight return 
 

. (10) 

Noting that both and are actually linear combinations of and 

with weights (0,δ) and (1,1) a more general extension may be obtained as 

. (11) 

where the optimal weights ω1 and ω2 are those values minimizing the Mean Squared 

Error (MSE). Hansen and Lunde (2005b) derived the expression for the weights (ω1,ω2) 

                                           
                               (12) 

where ,  , ,   is a relative 

importance  factor, where  ,  , and  . The 

authors      also      proposed      the      sample   estimates     , 

,   , 

 , 

,  and , where T is the   sample 

size. 
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3 THE AUGMENTED GARCH CONDITIONAL VOLATILITY 

Volatility is not observable and clearly time varying. It shows  periods  of  high  

volatility and periods of apparent calm, resulting in the well known clustering stylized fact. 

The Autoregressive Conditionally Heteroskedastic (ARCH) process of Engle (1982) 

successfully captures the volatility clusters and generalizes the implausible assumption of 

constant variance forecast. The basic idea behind this model is that the asset returns 

innovations are serially uncorrelated with a conditional variance which is a function of 

squared lagged returns. A generalized version of this process, the Generalized Autoregressive 

Conditionally Heteroskedastic (GARCH) process, with a more flexible lag structure was 

proposed by Bollerslev (1986). 

Let    be  the  asset  price  at  day   and   be the continuously 

compounded return on the asset over the period to . Let , where 

  and    are respectively the conditional mean and 

variance  given  the  information  set     at  time  ,  and  . The 

GARCH(p,q) conditional variance is given by 

 

(13) 

 
 

where  and  are nonnegative parameters with  and . 

The unconditional variance of is given by . 

Motivated by the GARCH model limitation of responding equally to positive and 

negative innovations, Nelson (1991) proposed a model for the logarithm of the conditional 

variance which also captures the effect of bad news. The Exponential GARCH (EGARCH) 

process specifies that 

 
(14) 

 
 

It is worthy noting that taking the logarithm of the conditional variance simplifies 

greatly the estimation procedure. 

We now include the realized range as exogenous variable in the volatility equations (13) 

and (14).   From now on we assume or that it has been estimated and subtracted 

fromthe return series. To unify the notations given in Section 2.3, let represent any of 
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the   measures,  or  their  three  extensions  ,   and  , or their 

logarithms. The augmented GARCH and EGARCH conditional variance equations estimated 

in the empirical investigation in Section 4 are: 

                                        (15) 
 

and 
 

    (16) 

In (15) the explanatory variable and its coefficient must be positive, whereas in (16) 

there are no restrictions. Therefore, in the applications that follow, we consider the logarithm 

of the realized measures only in (16). We observe that a more general model with several 

lagged values of the regressor may be considered. 

Equation (15) may be rewritten as 
 

                       (17) 
 

The term  in (17) is known as the shock to volatility and possesses zero 

expected value. Thus, in the long run, the conditional volatility value has two important 

components. One is the previous value times , and the other the positive quantity 

brought in by the explanatory variable. Clearly, represents the persistence of the 

volatility, the rate at which the conditional variance reverts to its unconditional value. For the 

EGARCHmodelthe persistence equals to . 

Models are estimated by maximum likelihood using the R environment and the rugarch 

package (GHALANOS, 2013). We test the explanatory power of the regressor using a t-test 

and assess the statistical significance of its contribution applying the standard likelihood ratio 

test (LRT). To test whether or not the inclusion of the realized range in the volatility equation 

improves forecasts and reduces persistence we apply formal tests and graphics. These 

evaluation procedures will be explained in the next section. 

4 DATA AND EMPIRICAL ANALYSIS 

The dataset was obtained directly from BM&FBOVESPA, which trading scheme is 

consisted of two trading sessions, regular session and after-market, both preceded by pre- 

opening auction sessions. The continuous regular session, in Brasília time (BRT) zone, begins 

at 10:00  and ends at 17:00 with its pre-opening session from 9:45 to 10:00. The  after-market 
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is from 17:35 until 19:00 with its pre-opening session from 17:30 to 17:35. The trading hours 

may change according to the daylight saving program, with the addition of onehour. 

The data are composed by the tick-by-tick transactions information on time, price and 

volume, from December 1st 2009 to March 23rd 2012, on the eight currently most liquid 

constituent stocks of the Bovespa Index, namely the PETR4 (Petrobras), VALE5 (Vale), 

TNLP4 (Telemar), USIM5 (Usiminas), BBDC4 (Banco Bradesco), CSNA3 (Companhia 

Siderúrgica Nacional), OGXP3 (OGX Petróleo) and ITUB4 (Itauunibanco). Table 7 in the 

Appendix gathers some summary statistics on the corresponding daily log-returns series of 

572 observations. In this table the stocks are ordered according to their standard deviations. 

Columns 7 and 8 give the values of the asymmetry and excess kurtosis sample coefficients, 

where the indicates which returns distributions are asymmetric with heavier tails than the 

Gaussian distribution at the 5% level. The larger excess kurtosis were observed for OGXP3 

and TNLP4.  The  Jarque-Bera test for normality rejected the null hypothesis for all stocks. 

The 20 realized measures (3 extensions on 5 definitions) are then computed for each 

∆ frequency (a total of 11 ∆ values) using the high frequency data for the 8 stocks. We 

recall that the main features of the unconditional distribution of stocks realized volatility 

are much less known for emerging markets. Regarding the realized range, the number of 

studies is even more limited. We illustrate and give in tables 1 and 2, for all stocks and for 

∆ = 5-minutes, some summary statistics of the unconditional distribution of the logarithm of 

and its three extensions, and the logarithm of the ,respectively. 

In tables 1 and 2 we observe that all measures’ distributions present large positive 

skewness and excess kurtosis, a well known stylized fact about volatility measures. The 

definition produces, in general, the smallest minimum and the largest maximum, 

standard deviation and skewness coefficient. This behavior is in line with others previous 

works which credit this larger variability to the equal weights given to the daily and overnight 

quantities. 

4.1 ESTIMATING THE AUGMENTING VOLATILITY EQUATION 

After applying the Ljung-Box test to the daily squared returns, and the Lagrange 

multiplier test for ARCH effects on the daily returns, and rejecting their null hypotheses for  

all stocks at the 5% significance level, we proceed in the estimation of the GARCH-type 

models. 
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We estimate by maximum likelihood the parameters of the GARCH and EGARCH 

specifications (13) and (14) with p = q = 1 (the search for the best orders for the large majority 

of cases indicated the simple GARCH(1, 1) as the best model). All solutions provided by 

the statistical computer package were carefully checked following suggestions given in 

McCullough and Vinod (2003). Then, all realized range measures (32 types and 11 

frequencies) were included in the volatility equations, and (15) and (16) were estimated. 

We recall that for the GARCH model the log-realized measures were not considered as 

exogenous variables. 

Table 1 - Summary Statistics of the Logarithm of the Parkinson Realized Range (∆ = 5 Minutes) 

and its Three Extensions 

Asset Rt
* 

Mean Min Max StdDev Skew Kurt ω1 ω2 

 

 

 

BBDC4 

ln Rt 0.6748 -0.9166 2.7518 0.5575 0.7330 1.3116 0.0000 1.0000 

ln R 
scale 

0.8381 -0.7533 2.9151 0.5575 0.7330 1.3116 0.0000 1.1774 

ln Rt
+on 

0.9556 -0.6516 3.4623 0.6401 0.8348 1.2195 1.0000 1.0000 

ln R 
ω 

1.0228 -0.5726 3.0810 0.5580 0.7407 1.2818 0.0653 1.3895 
 

 

 

 
 

VALE5 

ln Rt 0.3010 -1.2660 3.0443 0.5657 0.6296 1.4521 0.0000 1.0000 

ln R 
scale 

0.8897 -0.6773 3.6330 0.5657 0.6296 1.4521 0.0000 1.8016 

ln Rt
+on 

0.7197 -1.2090 3.7136 0.7326 0.8626 1.3426 1.0000 1.0000 

ln R 
ω 

0.8702 -0.7311 3.5769 0.5710 0.6332 1.3528 0.0912 1.7019 
 

 

 

 

ITUB4 

ln Rt 0.6636 -1.0988 2.9103 0.5575 0.8249 1.4918 0.0000 1.0000 

ln R 
scale 

0.9185 -0.8440 3.1652 0.5575 0.8249 1.4918 0.0000 1.2903 

ln Rt
+on 

0.9527 -0.7906 3.7341 0.6752 1.0293 1.9009 1.0000 1.0000 

ln R 
ω 

1.0654 -0.6934 3.3106 0.5578 0.8248 1.4860 0.0069 1.4914 
 

 

 

 
 

PETR4 

ln Rt 0.5959 -0.8919 2.7741 0.5235 0.5951 1.3263 0.0000 1.0000 

ln R 
scale 

1.0013 -0.4865 3.1795 0.5235 0.5951 1.3263 0.0000 1.4999 

ln Rt
+on 

0.9143 -0.7892 3.5600 0.6483 0.8287 1.2875 1.0000 1.0000 

ln R 
ω 

1.0149 -0.4845 3.1827 0.5254 0.5931 1.2787 0.0454 1.4980 
 

 

 

 

TNLP4 

ln Rt 0.8740 -0.5705 2.6628 0.5482 0.4266 0.3129 0.0000 1.0000 

ln R 
scale 

1.1589 -0.2856 2.9476 0.5482 0.4266 0.3129 0.0000 1.3296 

ln Rt
+on 

1.0955 -0.4776 3.7518 0.6221 0.8475 1.5632 1.0000 1.0000 

ln R 
ω 

1.1732 -0.2698 3.0025 0.5477 0.3563 0.2582 -0.1785 1.4074 
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t 

t 

t 

t 

t 

t 

scale +on ω 

 

 
 

 

 
 

CSNA3 

ln Rt 1.0657 -1.2157 3.2014 0.5783 0.4962 1.0713 0.0000 1.0000 

ln R 
scale 

1.2730 -1.0084 3.4087 0.5783 0.4962 1.0713 0.0000 1.2303 

ln Rt
+on 

1.3591 -1.1102 4.1433 0.6811 0.7853 1.3278 1.0000 1.0000 

ln R 
ω 

1.4552 -0.8217 3.5968 0.5783 0.4904 1.0704 -0.0189 1.4849 
 

 

 

 

USIM5 

ln Rt 1.1869 -0.9518 3.2429 0.5840 0.3590 0.8030 0.0000 1.0000 

ln R 
scale 

1.5026 -0.6360 3.5587 0.5840 0.3590 0.8030 0.0000 1.3713 

ln Rt
+on 

1.4933 -0.9474 4.0022 0.6516 0.5590 1.1916 1.0000 1.0000 

ln R 
ω 

1.5551 -0.6180 3.5821 0.5807 0.3807 0.8302 0.1065 1.3959 
 

 

 

 
 

OGXP3 

ln Rt 1.3365 0.1080 3.9453 0.5850 0.8484 1.4516 0.0000 1.0000 

ln R 
scale 

1.7599 0.5314 4.3687 0.5850 0.8484 1.4516 0.0000 1.5271 

ln Rt
+on 

1.6615 0.1808 5.7882 0.7137 1.0218 2.5203 1.0000 1.0000 

ln R 
ω 

1.8201 0.6035 4.4514 0.5822 0.8393 1.4192 -0.0668 1.6588 
 

 

Summary statistics of the logarithm of the Parkinson realized range and its three extensions across the 8 

stocks. Rt , Rt and  Rt           refer to definitions (8), (10) and (11), respectively. Kurt stands for the excess 

kurtosis, and ω1 and ω2 are the optimal weights. The sampling frequency is Δ = 5 minutes. 

Table 2 - Summary Statistics of the Logarithm of the Realized Variance (∆ = 5 Minutes) 

and its Three Extensions 

 

 

 

 

 

BBDC4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ITUB4 

 

 

 

 

 

 

 

 

Asset Rt
* Mean Min Max StdDev Skew Kurt ω1 ω2 

 ln Rt 0.6268 -0.9036 2.9614 0.6054 0.6486 0.8816 0.0000 1.0000 

 scale 

ln Rt 0.8079 -0.7225 3.1425 0.6054 0.6486 0.8816 0.0000 1.1985 

 ln Rt
+on 0.9262 -0.6641 3.4068 0.6697 0.7096 0.8933 1.0000 1.0000 

 ω 

ln Rt 0.9812 -0.5724 3.2530 0.6045 0.6666 0.8258 0.2056 1.3370 

 ln Rt 0.2220 -1.5360 3.1365 0.6443 0.3861 0.8440 0.0000 1.0000 

 

VALE5 

scale 

ln Rt 0.8438 -0.9143 3.7582 0.6443 0.3861 0.8440 0.0000 1.8622 

 ln Rt
+on 0.6684 -1.3683 3.7133 0.7816 0.6709 1.0139 1.0000 1.0000 

 
ω 

ln Rt 0.8062 -0.9527 3.6539 0.6468 0.4267 0.7929 0.1538 1.6755 

 ln Rt 0.6260 -1.0956 3.1499 0.6143 0.6731 1.0466 0.0000 1.0000 

 scale 

ln Rt 0.8827 -0.8389 3.4066 0.6143 0.6731 1.0466 0.0000 1.2927 

 ln Rt
+on 0.9303 -1.0878 3.7513 0.7095 0.8669 1.4999 1.0000 1.0000 

 ω 

ln Rt 1.0273 -0.7219 3.5235 0.6160 0.6853 1.0136 0.0871 1.4525 

 

PETR4 
ln Rt 0.4941 -1.1343 2.9070 0.6092 0.4376 0.8731 0.0000 1.0000 

 
scale 

ln Rt 0.9494 -0.6789 3.3623 0.6092 0.4376 0.8731 0.0000 1.5768 
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t 

t 

t 

 

 

 
 

ln Rt
+on 

0.8442 -1.0051 3.4904 0.7088 0.6014 0.8301 1.0000 1.0000 

ln R 
ω 

0.9299 -0.7490 3.2912 0.6126 0.4422 0.7509 0.1908 1.4438 
 

 

 
 

TNLP4 

ln Rt 1.0385 -1.5381 2.7331 0.5617 0.1083 0.5038 0.0000 1.0000 

ln R 
scale 

1.1596 -1.4170 2.8541 0.5617 0.1083 0.5038 0.0000 1.1287 
 

ln Rt
+on 

1.2380 -0.6182 3.7592 0.6177 0.5945 0.9228 1.0000 1.0000 

ln R 
ω 

1.2961 -1.3890 3.0000 0.5620 0.0838 0.6210 -0.0481 1.3076 

 
 

 

 

 

CSNA3 

ln Rt 1.1711 -1.2944 3.3629 0.5854 0.3345 0.8945 0.0000 1.0000 
 

ln R 
scale 

1.2742 -1.1913 3.4660 0.5854 0.3345 0.8945 0.0000 1.1086 
 

ln Rt
+on 

1.4489 -1.1807 4.1167 0.6686 0.6678 1.2335 1.0000 1.0000 

ln R 
ω 

1.5281 -0.9455 3.7088 0.5845 0.3485 0.9047 0.0367 1.4131 

 
 

 

 

 

USIM5 

ln Rt 1.2014 -0.6665 3.4633 0.6068 0.2882 0.6738 0.0000 1.0000 

ln R 
scale 

1.4901 -0.3779 3.7520 0.6068 0.2882 0.6738 0.0000 1.3346 
 

ln Rt
+on 

1.5127 -0.5686 4.0156 0.6570 0.4835 0.9581 1.0000 1.0000 

ln R 
ω 

1.5645 -0.2731 3.7642 0.5977 0.3376 0.6717 0.1947 1.3472 

 
 

 

 

 

OGXP3 

ln Rt 1.2551 -0.3509 3.9702 0.6417 0.6759 1.0293 0.0000 1.0000 
 

ln R 
scale 

1.7232 0.1172 4.4383 0.6417 0.6759 1.0293 0.0000 1.5969 
 

ln Rt
+on 

1.6055 -0.1914 5.7936 0.7502 0.8838 2.1122 1.0000 1.0000 

ln R 
ω 

1.7540 0.1660 4.4937 0.6429 0.6508 0.9602 -0.0653 1.6880 

 
 

Summary statistics of the logarithm of the realized volatility and its three extensions across the 8 stocks. 

Rt
scale

, Rt
+on 

and Rt
ω 

refer to definitions (8), (10) and (11), respectively. Kurt stands for the excess kurtosis,  
and ω1 and ω2 are the optimal weights. The sampling frequency is Δ = 5 minutes. 

The GARCH(1, 1) and EGARCH(1, 1) models based on either the Normal or on the     

t- student conditional distribution resulted in excellent fits for all stocks,  in the sense that  

they were able to capture the dynamics observed in the second moment of the returns 

distributions. Using a fatter tail asymmetric conditional distribution did not further improve 

the fits. The augmented models were then estimated keeping the winning specification. 
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* 

 
 

Table 3 - Some Selected GARCH(1,1) and GARCH(1,1)+Rt
* 
Fits 

Stock (Rt , ∆, Rt   Cond.Distribution) GARCH(1,1) GARCH(1,1) with Rt * PPR  LRT 
 

 α1 +β1 α1 +β1 θ1 
 

BBDC4 (RS, 420min, R+on, t)  0.8421 0.0815*
 -12.7% 0.0003 

BBDC4 (RS, 210min, Rω , t) 0.9646 0.8453 0.1098*
 -12.4% 0.0000 

BBDC4 (RS, 210min, R+on, t)  0.8463 0.0806*
 -12.3% 0.0001 

VALE5 (Park, 30min, R+on, t)  0.8011 0.1513*
 -18.2% 0.0002 

VALE5 (Park, 210min, Rω , t) 0.9792 0.8031 0.1431*
 -18.0% 0.0002 

VALE5 (Park, 420min, R+on, t)  0.8259 0.1238*
 -15.7% 0.0002 

ITUB4 (GK1, 420min, R+on, t)  0.7870 0.1157*
 -18.4% 0.0003 

ITUB4 (GK2, 420min, R+on, t) 0.9642 0.7868 0.1160*
 -18.4% 0.0003 

ITUB4 (RS, 420min, R+on, t)  0.7963 0.1074*
 -17.4% 0.0002 

PETR4 (RS, 1sec, Rω , N)  0.3719 0.4237**
 -60.8% 0.0000 

PETR4 (Park, 1sec, Rω , N) 0.9498 0.3772 0.4751**
 -60.3% 0.0001 

PETR4 (GK1, 1sec, Rω , N)  0.3799 0.4412**
 -60.0% 0.0000 

TNLP4 (Park, 10min, Rω , t)  0.8920 0.1110**
 -3.9% 0.0001 

TNLP4 (Park, 5min, Rω , t) 0.9283 0.8975 0.1057**
 -3.3% 0.0002 

TNLP4 (RS, 30min, Rt , t)  0.9166 0.1061**
 -1.3% 0.0001 

CSNA3 (GK1, 1min, R+on, t)  0.8883 0.0897*
 -9.4% 0.0000 

CSNA3 (GK2, 1min, R+on, t) 0.9805 0.8883 0.0898*
 -9.4% 0.0000 

CSNA3 (RS, 1min, R+on, t)  0.8899 0.0836*
 -9.2% 0.0000 

USIM5 (GK1, 1sec, Rt ,N)  0.8175 0.4708*
 -12.3% 0.0000 

USIM5 (GK1, 1sec, Rscale, N) 0.9322 0.8175 0.0887*
 -12.3% 0.0000 

USIM5 (GK2, 1sec, Rt ,N)  0.8168 0.4706*
 -12.4% 0.0000 

OGXP3 (RS, 210min, Rω , t)  0.4477 0.3033*
 -51.9% 0.0000 

OGXP3 (RS, 210min, Rt , t) 0.9310 0.4668 0.4168*
 -49.9% 0.0000 

OGXP3 (RS, 210min, Rscale, t)  0.4668 0.2935*
 -49.9% 0.0000 

* and ** denote respectively significance at the 5% and at the 1% level. PPR stands for percentage 

persistence reduction, and LRT   stands for likelihood ratio test. 

We now look for indicators of whether or not the realized range helps explaining the 

evolution of the conditional (E)GARCH variance. Typically, for any given stock, all tested 

realized range measures for some frequencies ∆ (we experimented 176 specifications   

in the case of the GARCH model, and 352 in the case of the EGARCH model) were found 

statistically significant improving the fit as measured by the likelihood ratio test. There were 

no differences between the GARCH and the EGARCH models with respect to how many 

realized measures specifications were statistically significant. For both models the winning 

frequencies at which the realized ranges brought in exploratory power are, ordered  by  

number of cases, 1-second, 210-minutes, 420-minutes, 105-minutes and 30-minutes. The 

Rogers and Satchell and the Parkinson ranges at the winning ∆ frequencies were found to     

be the best choices as exploratory variables in the volatility equation. Results indicate that the 

Parkinson range should be preferable when analyzing the stocks PETR4, BBDC4, CSNA3, 

OGXP3, and ITUB4,  and that the Rogers and Satchell range should be used in the case of 
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VALE5, whereas both ranges provided similar performance in the cases of TNLP4 and 

USIM5. The plain version and the extension are the most successful types. 

 

 
Stock (Rt , ∆, Rt 

Table 4 - Some Selected EGARCH(1,1) and EGARCH(1,1)+Rt
* 
Fits 

Cond.Distribution) EGARCH(1,1) EGARCH(1,1) with Rt  * PPR 
* 

 

LRT 

 
β1 β1 θ1 

BBDC4 (Park, 1sec, ln Rω , t) 0.9414 0.0421* 

17** 

13** 

41* 

51* 

47* 

90** 

43** 

52** 
 

33** 

PETR4 (Park, 210min, ln Rω , N) 0.9114 0.5543           0.3409** 

PETR4 (Park, 210min, R+on, N)  0.6699 0.0440* 
 

TNLP4 (RS, 420min, ln Rt , t)  0.4282           0.4376** 

TNLP4 (Park, 1sec, ln Rt , t) 0.9541 0.9438           0.0344** 

TNLP4 (Park, 1sec, Rω , t)  0.9455           0.0089** 
 

CSNA3 (Park, 1sec, ln R+on, t) 0.9463           0.0374** 

CSNA3 (RS, 420min, ln Rscale, t)          0.9913 0.9448           0.0527** 

CSNA3 (RS, 1sec, ln R+on, t) 0.9567           0.0270** 
 

USIM5 (Park, 1sec, ln R+on, t)  0.8227 0.1030* 

USIM5 (RS, 1sec, ln R+on, t) 0.9537 0.8429 0.0898** 

USIM5 (RS, 1sec, ln Rω , t)  0.8271 0.0938** 
 

OGXP3 (Park, 210min, ln Rt , t)  0.6422           0.2901** 

OGXP3 (RS, 1min, ln Rt , t) 0.9380 0.6699 0.2644* 

OGXP3 (Park, 210min, ln R+on, t) 0.7241           0.2114** 

* and ** denote respectively significance at the 5% and at the 1% level. PPR stands for percentage 

persistence reduction, and LRT stands for likelihood ratio test. 

Since the most important feature of the (E)GARCH volatility is its persistence, one way 

to assess the goodness of the modeling strategy is computing the persistence percentage 

decrease, that is, the change in the estimated persistence relative to the simple model. The 

smaller this (negative) quantity the more responsible is the exogenous variable for explaining 

the conditional volatility, decreasing the contribution of the past values. Tables 3 and 4 give, 

respectively for the GARCH and the EGARCH models, for all stocks and for some selected 

frequencies and realized measures, the estimate of the exogenous variable, the values of the 

persistence under the simple and extended models, along with the values of the persistence 

percentage reduction (PPR). We observe a considerable reduction in the persistence due to the 

-4.21% 0.0332 

-4.11% 0.0238 

-4.08% 0.0239 

-10.86% 0.0008 

-13.63% 0.0005 

-10.42% 0.0009 

-1.55% 0.0267 

-2.22% 0.0078 

-3.05% 0.0198 

-36.62% 0.0000 

-39.18% 0.0000 

-26.50% 0.0002 

-55.12% 0.0000 

-1.08% 0.0161 

-0.90% 0.0122 

-4.54% 0.0136 

-4.69% 0.0011 

-3.49% 0.0174 

-13.74% 0.0001 

-11.62% 0.0000 

-13.27% 0.0000 

-31.54% 0.0000 

-28.58% 0.0000 

-22.80% 0.0000 

 

BBDC4 (GK2, 1sec, ln Rt , t) 0.9828 0.9424 0.04 
BBDC4 (GK1, 1sec, ln Rt , t)  0.9427 0.04 

VALE5 (Park, 210min, ln Rt , N)  0.8386 0.11 
VALE5 (Park, 60min, ln Rt , N) 

VALE5 (Park, 105min, ln Rscale, N) 

0.9408 0.8126 0.14 

0.8428 0.11 
ITUB4 (Park, 1sec, ln Rt , N)  0.9726 0.01 
ITUB4 (RS, 1sec, ln Rt , N) 0.9879 0.9660 0.02 

ITUB4 (RS, 15min, ln Rt , N)  0.9578 0.03 

PETR4 (Park, 210min, ln Rt , N)  0.5776 0.34 
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presence of the realized range in the volatility equation. The tables also provide the p-value of 

the likelihood ratio test (LRT) whose null hypothesis is that the simple model (with no 

exogenous variable) should be preferable. In table 3, the positive sign of the estimate of is 

expected indicating that higher values for the range are associated with higher levels of the 

conditional volatility. 

Table 5 - Mean Absolute Percentage Error (mape) and the Median Absolute Percentage Error (mdape) 

Used to Compare the GARCH, GARCH+Rt
*
, EGARCH, and EGARCH+Rt

* 
Volatility Forecast 

 

Stock (Rt , ∆, Rt*  
G 

mape 
G+R 

* 
E 

t 

 
E+R 

*
 

t 

 
G 

mdape 
G+R 

* 
E 

t 

 
E+R 

*
 

t 

BBDC4 (Park, 1sec, ln Rω , t) 18.44 17.89 18.71 18.51 13.12 13.78 16.87 15.08 

VALE5 (Park, 105min, ln 43.82 34.75 38.53 33.53 38.62 28.04 35.06 29.72 

ITUB4 (RS, 1sec, ln Rt , N) 23.29 21.08 17.70 17.35 17.25 18.02 15.58 15.35 

PETR4 (Park, 210min, ln Rω , N 30.80 24.72 25.18 24.59 24.82 20.45 21.11 20.48 

TNLP4 (RS, 420min, ln Rt , t) 20.31 17.70 20.42 18.23 17.98 15.86 18.49 16.35 

CSNA3 (RS, 420min, ln Rscale, 14.34 14.44 16.23 16.02 10.77 12.54 14.22 12.83 

USIM5 (Park, 1sec, ln R+on, t) 14.16 16.58 14.04 18.58 11.58 12.70 10.51 14.24 

OGXP3 (Park, 210min, ln Rt , t) 28.72 20.76 22.97 20.85 22.31 17.05 18.11 17.40 

Notation in table: Stock (Rt , ∆, Rt* Cond.Distribution) stands for Asset tick (Realized range, sampling 

frequency Delta, extended realized measure Rt* conditional distribution). G and E stands for models  

GARCH and EGARCH. The boldface type indicates the model with the smaller mape or   mdape. 

Figure 1 plots for some selected fits presented in the previous tables the evolution 

through time of the conditional volatility estimated under the four models. As expected, they 

are not very close. 

Probably the most difficult step when assessing forecasts performance is the choice of 

the volatility proxy, since the true volatility is not observed. Recently, the realized volatility 

has been preferred upon the squares or the absolute values of returns (see, for example, 

Andersen and Bollerslev (1998)). We use as proxy for the 1-minute realized volatility, that 

is,  the square root of equation (1), which we denote by . The forecast errors are then 

defined as , where is the forecast under some GARCH-type  model. 

The out-of-sample one-step-ahead volatility forecasts exercise is carried on as follows. 

For each selected series we separate the initial 400 observations (data from December 3rd, 

2009 to July 18th, 2011), estimate the (E)GARCH models with and without the realized 

range, and compute the one-step-ahead out-of-sample corresponding forecasts. Then we 

move the data window incorporating the next observation and keeping the same sample size 

of 400. Parameters are re-estimated. This results in 4 series of 171 out-of-sample one-step- 

ahead forecasts errors, denoted by , respectively the forecast errors  from 
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* 

t 

 

 

 

models   GARCH,  , EGARCH,  and  .  The  8    selected  model 

specifications for   which we present the forecasts results are marked with an in Table 2. 

Table 6 - Diebold and Mariano Test for Comparing Volatility Forecasts Performances of [Model I vs 

Model J]. Null Hypothesis is that Model J Provides Better Out-of-Sample Forecasts. Smaller Values of the 

Test Statistic Lead to the Rejection of the Null 

 
 

Stock (Rt , ∆, Rt Cond.Distribution)  C1 C2 C3  
GARCH+Rt

* vs GARCH EGARCH+Rt
* vs EGARCH EGARCH+Rt

*  vs GARCH+R ∗ 

BBDC4 (Park, 1sec, ln Rω , t) -2.4776 -2.8983 0.1033 

 (0.0071) (0.0021) (0.5411) 

VALE5 (Park, 105min, ln Rscale, N) -6.8324 -3.3370 -0.1828 
 (0.0000) (0.0005) (0.4276) 

ITUB4 (RS, 1sec, ln Rt , N) -3.0657 -1.8894 -1.8584 

 (0.0013) (0.0303) (0.0324) 

PETR4 (Park, 210min, ln Rω , N) -3.3720 0.7940 -0.5717 
 (0.0005) (0.7858) (0.2841) 

TNLP4 (RS, 420min, ln Rt , t) -3.9424 -3.6698 -0.2855 

 (0.0001) (0.0002) (0.3878) 

CSNA3 (RS, 420min, ln Rscale, t) -1.8079 -1.6225 -0.0902 
 (0.0362) (0.0533) (0.4641) 

USIM5 (Park, 1sec, ln R+on, t) 0.2325 0.7854 2.0903 

 (0.5918) (0.7833) (0.9810) 

OGXP3 (Park, 210min, ln Rt , t) -3.3857 -1.5215 0.4324 
 (0.0004) (0.0650) (0.6670) 

Notation in table: Stock (Rt , ∆, Rt* Cond.Distribution) stands for  Asset  tick  (Realized 

range, sampling frequency Delta, extended realized  measure Rt* conditional distribution). 

The boldface type indicates rejection of the null at the 5% significance level. 

A simple scale independent measure of performance may be computed using the 

absolute  values  of  the  ,  see  Hyndman(2006).  It  is  the  mean    absolute 

percentage error, defined as . We  also report  a  more   robust 

measure    of discrepancy based on the median, namely, the median absolute percentage error, 

defined  as  . Table 5 reports the mapei and the mdapei for 

models , and for the selected stocks. Overall, we observe smaller values for the 

augmented models, with occasional disagreement between the two measures. In both cases 

where the simpler model seems to be providing forecasts closer to the proxy, the result could 

be a tie if measures’ variability would have been taken into account. 

We now formally test which model specification produces the better one-step-ahead 

volatility forecasts. To this end we use an statistic suggested  in  Diebold  and  Mariano  

(1995) and modified in Harvey et al. (1997), which compares the forecasts from two 

competing  models,   i  and  j.  Consider  the  differences  , 

where  T  is  the  sample  size,  here T  = 171, and  where typically is the square or the 

absolute  value  of  x.  Christoffersen  and Diebold(1996) suggestedpenalizingdifferentlyover 
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and under predictions. However, due to the uncertainty on the best proxy for we just take 

 as  .  The test statistic is based on  the mean difference . The null 

hypothesis is that model j provides better forecasts. Small negative values of  lead to the 

rejection  of  the  null.  Asymptotically  the  standardized    follows a standard normal 

distribution, seedetailsinDieboldandMariano (1995). 

We carry  on  three  out-of-sample  forecasts  comparisons.  The  comparison  C1: 

GARCH+  versus GARCH, C2:   versus EGARCH, and C3:     EGARCH+ 

versus . Table 6 gives the value of the test statistic and corresponding p-value, for  

aselection of stocks. The boldface type indicates the rejection of the null hypothesis at the 5% 

level. Results in the table are a very good summary of what has occurred for the remaining 

models specifications. That is, typically the  and the  models                         out-   

perform the simpler GARCH and EGARCH volatility forecasts, whereas there is no clear 

improvement when moving  from the to the . 

Finally, Figure 2 shows the persistence evolution during the forecast  period for  the  

four competing models and for the same stocks of Figure 1. It is clear that the augmented 

volatility equation consistently attains remarkable reduction in persistence. 

5 CONCLUSIONS 

In this paper we empirically investigated whether or not the realized range provides 

additional information to the GARCH and EGARCH model. To this end we considered 4 

definitions of the realized range. These measures were computed based on 11 frequencies, as 

well as 3 possible ways for incorporating the overnight  return.  This  resulted  in  176  

realized range measures. All, along with their logarithm, were tested as exogenous variables  

in the conditional variance equation. 

In summary, we found that the realized range is very successful when explaining part of 

the (E)GARCH conditional volatility. This modeling strategy reduces the persistence and 

improves the out-of-sample forecasts. We were able to reach a conclusion on the best 

frequencies (1- second, 210-, 420-, 105- and 30-minutes) and best realized range definition to be 

used, Parkinson and Rogers and Satchell, at the plain definition and based on a linear 

combination with the after hours returns. A possibility not explored here is to obtain the optimal 

weights of the linear combination in a joint estimation with the (E)GARCH parameters. 

These findings are very promising whenever high-frequency data are not available, since 

the  realized  ranges  may  be  computed  over  daily  sampling  intervals,  and  the    information 
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required – open, high, low and close daily prices – are usually available. Although only Brazilian 

data were used, we think that findings might be extrapolated to other emerging markets due to 

their similarities. 
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APPENDIX  

 

Table 7 - Summary Statistics for Daily Stock Returns (%) 
 

Asset Mean Median Min. Max. Std. Dev. Skewness Kurtosis 

BBDC4 0.0244 0.0332 -6.8371 7.7926 1.6663 0.0052 1.2399* 
VALE5 0.0051 0.0439 -8.4009 5.7984 1.7145 -0.2425* 1.9782* 
ITUB4 -0.0020 -0.0271 -7.9596 7.5120 1.7379 -0.0919 1.4905* 
PETR4 -0.0740 0.0000 -8.1362 4.9402 1.7851 -0.4160* 1.2992* 
TNLP4 -0.0745 -0.0549 -9.4688 12.0500 1.9379 0.2537* 4.4382* 
CSNA3 -0.0719 -0.0455 -9.6496 8.5958 2.0771 -0.0447 1.6088* 
USIM5 -0.1090 -0.0922 -6.8066 11.1372 2.3284 0.2951* 0.9432* 
OGXP3 0.0055 0.0000 -16.6313 11.1156 2.6769 -0.8132* 5.2743* 

Each sample contains 572 daily observations collected from 12/02/09  to  03/23/12.  Kurtosis 

stands for the excess kurtosis. The * indicates statistical significance at the 5% level when testing 

returns distributions asymmetry and kurtosis. 
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